Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.749
Filtrar
1.
Sci Total Environ ; 924: 171686, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485026

RESUMO

Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.


Assuntos
Methylococcaceae , Petróleo , Campos de Petróleo e Gás , Metano , Solo , Bioprospecção , Microbiologia do Solo , Filogenia , Oxirredução
2.
J Hazard Mater ; 469: 134100, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522202

RESUMO

Contamination of oilfield chemicals (OFCs) by benzo[a]pyrene (B[a]P) is increasingly becoming a severe environmental security issue. There is an urgent need to develop a rapid and accurate method for B[a]P detection in OFCs. In this study, B[a]P hapten was designed using computer aided molecular design. A high-affinity, specific, and matrix-insensitive monoclonal antibody (mAb) with IC50 values of 6.77 ng/mL was obtained. Based on this mAb, we developed a rapid gold nanoparticle-based immunochromatographic strip assay (GICA) with double T-line mode for on-site detection of B[a]P in OFCs samples. The GICA exhibited excellent detection performance in OFCs samples with strong acidity, strong alkalinity, and deep color. Under optimal conditions, the proposed method detected B[a]P in OFCs at 0.42-300 mg/kg, and limit of detection was 0.23-1.07 mg/kg. The recovery rate was 88-106% with a coefficient of variation of 1.46-6.35%. Confirmed by natural positive OFCs samples and high-performance liquid chromatography, this GICA is accurate and reliable, with great potential for rapid and cost-effective on-site detection.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Benzo(a)pireno , Análise Custo-Benefício , Campos de Petróleo e Gás , Nanopartículas Metálicas/química , Cromatografia de Afinidade , Imunoensaio/métodos , Anticorpos Monoclonais , Limite de Detecção
3.
Sci Prog ; 107(1): 368504241231663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490166

RESUMO

This study examined the histological aberrations in the gill and liver tissues and behavioural changes of Tilapia guineensis fingerlings exposed to lethal concentrations of used Oilfield-based emulsifiers for 96 h. Various concentrations of the surfactants were tested, ranging from 0.0 to 15.0 ml/L. The behaviour of the fish was observed throughout the experiment, and the results showed that increasing concentrations of the surfactants led to progressively abnormal behaviour, including hyperventilation and altered opercular beat frequency. These behavioural changes indicated respiratory distress and neurotoxic effects. Histological analysis revealed structural aberrations in the gill and liver tissues, with higher concentrations causing more severe damage, such as lesions, necrosis, inflammation, and cellular degeneration. This implies that surfactants released even at low concentrations are capable of inducing changes in the tissues of aquatic organisms. These findings highlight the toxic effects of the surfactants on fish health and provide biomarkers of toxicity. Future research should focus on understanding the specific mechanisms and long-term consequences of surfactant toxicity on fish genetic composition, populations, and ecosystems to implement effective conservation measures.


Assuntos
Tilápia , Poluentes Químicos da Água , Animais , Ecossistema , Campos de Petróleo e Gás , Papua Nova Guiné , Fígado , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Bioelectrochemistry ; 157: 108659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330530

RESUMO

The issue of material failure attributed to microbiologically influenced corrosion (MIC) is escalating in seriousness. Microorganisms not only facilitate corrosion but certain beneficial microorganisms also impede its occurrence. This study explored the impact of marine B. velezensis on the corrosion behavior of X65 steel in simulated offshore oilfield produced water. B. velezensis exhibited rapid growth in the initial stages, and the organic acid metabolites were found to promote corrosion. Subsequently, there was an increase in cross-linked "networked" biofilms products, a significant rise in the prismatic shape of corrosion products, and a tendency for continuous development in the middle and late stages. The organic/inorganic mineralized film layer formed on the surface remained consistently complete. Metabolic products of amino acid corrosion inhibitors were also observed to be adsorbed into the film. B. velezensis altered the kinetics of the X65 steel cathodic reaction, resulting in a deceleration of the electrochemical reaction rate. The mineralization induced by B. velezensis effectively slowed down the corrosion rate of X65 steel.


Assuntos
Bacillus , Aço , Aço/química , Água , Corrosão , Biomineralização , Campos de Petróleo e Gás , Biofilmes
5.
Environ Pollut ; 346: 123602, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382731

RESUMO

Alkylated polycyclic aromatic hydrocarbons (APAH) are important contaminants of crude oil production and exhibit similar toxicity to their parent compounds. This study developed an emission inventory of APAH in a major oil sands development region of Alberta, Canada, and validated the inventory with ambient concentration measurements through dispersion modeling. The initial estimate of regional total annual emissions of 21 APAH species was 362 tonnes/year in the last decade, of which 309 and 53 tonnes/year were in particle-bound and gas-phase APAH, respectively. Fugitive dust from oil sands mining activities is the primary source of particle-bound APAH, emitting 274 tonnes/year. Other major sources of APAH include point sources (31), tailings ponds (21), anthropogenic fuel consumption from mine fleet (17), and local transportation (13). The group of species with highest emissions was C1-C4 alkylnaphthalenes (53%), followed by C1-C4 alkylphenanthrenes/anthracenes (19%), C1-C4 fluorenes (13%), and C1-C4 fluoranthenes/pyrenes and C1-C4 benz[a]anthracenes/chrysene/triphenylenes (7% each). CALPUFF dispersion modeling was performed using the APAH emissions as model input. The model-predicted annual average ambient APAH concentrations at 17 monitoring sites were 1%-52% (19% on average) lower than the measurements. Inverse dispersion modeling was then applied to adjust APAH emissions higher by 19% for each of the 21 APAH species, which resulted in a revised estimate of APAH emissions to 431 tonnes/year. With the revised emissions as model input, model bias in the predicted ambient concentration was reduced from -19% to -8%. The model results showed the highest concentrations of APAH were near tailings ponds and open mining faces and downwind areas, with total APAH concentrations being higher than 50 ng/m3.


Assuntos
Diaminas , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Campos de Petróleo e Gás , Monitoramento Ambiental/métodos , Alberta , Antracenos
6.
J Environ Sci (China) ; 141: 287-303, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408829

RESUMO

Graphitic carbon nitride with nanorod structure (Nr-GCN) was synthesized using melamine as a precursor without any other reagents by hydrothermal pretreatment method. XRD, FTIR, SEM, N2 adsorption-desorption from BET, UV-Vis DRS spectroscopy, and photoluminescence were used to characterize the prepared samples. Also, the photoelectrochemical behavior of nanoparticles was studied by photocurrent transient response and cyclic voltammetry analysis. Polystyrene (PS) fibrous mat was fabricated by electrospinning technique and used as a support for the stabilization of the nanoparticles. The performance of the synthesized nanoparticles and photocatalytic fibers (PS/Nr-GCN) was evaluated in oilfield-produced water treatment under visible light irradiation. During this process, oil contaminants were adsorbed by hydrophobic polystyrene fibers and simultaneously degraded by Nr-GCN. The removal efficiency of chemical oxygen demand (COD) has been obtained 96.6% and 98.4% by Nr-GCN and PS/Nr-GCN, respectively, at the optimum conditions of pH 4, photocatalyst dosage 0.5 g/L, COD initial concentration 550 mg/L, and illumination time 150 min. The gas chromatography-mass spectroscopy analysis results showed 99.3% removal of total petroleum hydrocarbons using photocatalytic fibers of PS/Nr-GCN. The results demonstrated that the GCN has outstanding features like controllable morphology, visible-light-driven, and showing high potential in oily wastewater remediation. Moreover, the synergistic effect of adsorption and photocatalytic degradation is an effective technique in oilfield-produced water treatment.


Assuntos
Grafite , Nanotubos , Compostos de Nitrogênio , Poliestirenos , Adsorção , Campos de Petróleo e Gás
7.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305872

RESUMO

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Assuntos
Hordeum , Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/microbiologia , Campos de Petróleo e Gás , Hordeum/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Solo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/metabolismo
8.
Sci Rep ; 14(1): 2954, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316948

RESUMO

The quantity and quality of DNA isolated from environmental samples are crucial for getting robust high-throughput sequencing data commonly used for microbial community analysis. The differences in the nature and physicochemical properties of environmental samples impact DNA yields, and therefore, an optimisation of the protocols is always recommended. For instance, samples collected from corroded areas contain high concentrations of metals, salts, and hydrocarbons that can interfere with several steps of the DNA extraction protocols, thereby reducing yield and quality. In this study, we compared the efficiency of commercially available DNA extraction kits and laboratory-adopted methods for microbial community analysis of iron incrustations and oilfield-produced water samples. Modifications to the kits manufacturers' protocols were included to maximise the yield and quality. For iron incrustations, the modified protocol for FastDNA Spin Kit for Soil yielded higher DNA and resulted in higher diversity, including the recovery of low-abundant and rare taxa in the samples, compared to DNeasy PowerSoil Pro Kit. The DNA extracted with modified phenol-chloroform methods yielded higher DNA but failed to pass quality control PCR for 16S sequencing with and without purification. The protocols mentioned here can be used to maximise DNA recovery from iron incrustations and oilfield-produced water samples.


Assuntos
DNA Ambiental , Microbiota , DNA Bacteriano/genética , Ferro , Campos de Petróleo e Gás , DNA/genética , Microbiota/genética
9.
PLoS One ; 19(2): e0297104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315671

RESUMO

The micro-occurrence characterization of shale oil is a key geological issue that restricts the effective development of continental shale oil in China. In order to make up for the lack of research in this area, this paper carries out a series of experiments on the shale oil of the Lucaogou Formation using a multi-step extraction method, with the aim of exploring the micro-occurrence types and mechanisms of shale oil in the Lucaogou Formation, as well as exploring its direct connection with production and development. In this paper, shale oil in the reservoir is divided into two categories: free oil and residual oil. The polar substances and OSN compounds are the key factors determining the occurrence state of shale oil. Abundant polar substances and OSN compounds can preferentially react with mineral surfaces (including coordination, complexation, ionic exchange, and so on) to form a stable adsorption layer, making it difficult to extract residual oil in actual exploitation. Free oil is mainly composed of aliphatic hydrocarbons, and its adsorption capacity is related to the length of the carbon chain, i.e. long carbon chain, strong adsorption capacity, and poor movability. Free oil is widely stored in pores and cracks, and that with high mobility can be the most easily extracted, making it the main target at present exploitation. In the current state of drilling and fracturing technology, research should prioritize understanding the adsorption and desorption mechanisms of crude oil, particularly residual oil. This will help optimize exploitation programs, such as carbon dioxide fracturing and displacement, to enhance shale oil production.


Assuntos
Campos de Petróleo e Gás , Petróleo , Minerais , China , Adsorção
10.
Environ Sci Pollut Res Int ; 31(13): 20117-20132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374501

RESUMO

Produced water (PW) is the largest by-product that comes out of the oil wells during oil and gas (O&G) field exploration. PW contains high-salt concentration along with other organic and inorganic components; therefore, PW must be treated before disposal. Electrocoagulation (EC) is an effective treatment method to remove pollutants from PW which has been the focus of many experimental studies; however, a mathematical model specifically for PW treatment by EC has not been developed yet. In this work, a comprehensive mathematical model has been developed to elucidate the role of EC operating parameters on the PW treatment performance and determine the mechanism for COD (Chemical Oxygen Demand) removal. The present model considers and identifies the dominant Al-hydroxy complex species and their contribution to the COD removal from synthetic PW samples by estimating their rate constants and comparing their magnitudes and investigates multi-scale modelling of the EC reactor. The influence of working parameters such as current density, initial pH, interelectrode distance, mixing speed and solution volume of PW on Al coagulant production and COD removal was investigated and modelled. The study estimates the rate constants of the reactions taking place for COD removal by EC process and by comparing their magnitudes identifies the dominant reactions and coagulant species involved in the process. The mathematical model prediction of COD removal fits well with the experimental data at 10 mA cm-2, 15 mA cm-2 and 20 mA cm-2 current density with R2 value of 0.96, 0.97 and 0.92, respectively and for dissolved Al concentration R2 value of 0.96, 0.99, and 0.97, respectively. The simulated results reproduced a good fit at initial pH of 6.1, 7.3 and 8.6 with R2 value of 0.92, 0.96 and 0.98, respectively for COD removal. The mathematical model and the experimental results showed the role of dominant Al-hydroxy complex species such as Al OH 2 + , Al OH 2 + , Al OH 3 , Al 2 OH 2 + 4 and Al OH 4 - in controlling the COD removal process. Under different operating conditions considered in the study, the model also predicted the COD removal performance of the EC reactors at different reactor volumes with R2 value of 0.96 for higher solution volume and larger reactor. The model presented and rate constants determined in the study will provide a theoretical basis for designing, scaling up and operating the EC reactor for oil-field PW treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Alumínio , Água , Campos de Petróleo e Gás , Concentração de Íons de Hidrogênio , Eletrodos , Eletrocoagulação/métodos , Modelos Teóricos , Poluentes Químicos da Água/análise , Resíduos Industriais
11.
Sci Total Environ ; 916: 170333, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278269

RESUMO

Recently intensified oil exploitation has resulted in the discharge of large amounts of wastewater containing high concentrations of organic matter and nutrients into the receiving aquatic and soil environments; however, the effects of oilfield-produced water on the soil microbiota are poorly understood. In this study, we conducted a comprehensive analysis to reveal the composition and diversity of the microbial community at horizontal and vertical scales in a typical arid soil receiving oilfield-produced water in Northwest China. Oilfield-produced water caused an increase in microbial diversity at the horizontal scale, and the communities in the topsoil were more variable than those in the subsoil. Additionally, the microbial taxonomic composition differed significantly between the near- and far-producing water soils, with Proteobacteria and Halobacterota dominating the water-affected and reference soil communities, respectively. Soil property analysis revealed that pH, salt, and total organic content influenced the bacterial communities. Furthermore, the oil-produced water promoted the complexity and modularity of distance-associated microbial networks, indicating positive interactions for soil ecosystem function, but not for irrigation or livestock watering. This is the first detailed examination of the microbial communities in soil receiving oilfield-produced water, providing new insights for understanding the microbial spatial distributions in receiving arid soils.


Assuntos
Microbiota , Solo , Solo/química , Água , Campos de Petróleo e Gás , Bactérias , Microbiologia do Solo
12.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200199

RESUMO

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Assuntos
Gás Natural , Campos de Petróleo e Gás , Bactérias/metabolismo , Proteobactérias , Firmicutes , Solo/química , Acidobacteria , Minerais/metabolismo , Fósforo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Aminoácidos/metabolismo , Microbiologia do Solo
13.
Antonie Van Leeuwenhoek ; 117(1): 14, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170333

RESUMO

A Gram-stain-positive, rod-shaped, non-spore-forming, alkane degrading bacterium, designated DJM-14T, was isolated from oilfield alkali-saline soil in Heilongjiang, Northeast China. On the basis of 16 S rRNA gene sequencing, strain DJM-14T was shown to belong to the genus Nocardioides, and related most closely to Nocardioides terrigena KCTC 19,217T (95.53% 16 S rRNA gene sequence similarity). Strain DJM-14T was observed to grow at 25-35 °C, pH 7.0-11.0, in the presence of 0-6.0% (w/v) NaCl. The predominant respiratory quinone was MK-8 (H4) and LL-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major fatty acids were identified as iso-C16:0 and C18:1 ω9c. It contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids. The genome (3,722,608 bp), composed of 24 contigs, had a G + C content of 69.6 mol%. Out of the 3667 predicted genes, 3618 were protein-coding genes, and 49 were ncRNAs. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity (ANI) of strain DJM-14T against genomes of the type strains of related species in the same family ranged between 18.7% and 20.0%; 68.8% and 73.6%, respectively. According to phenotypic, genotypic and phylogenetic data, strain DJM-14T represents a novel species in the genus Nocardioides, for which the name Nocardioides limicola sp. nov. is proposed and the type strain is DJM-14T (= CGMCC 4.7593T, =JCM 33,692T). In addition, novel strains were able to grow with n-alkane (C24-C36) as the sole carbon source. Multiple copies of alkane 1-monooxygenase (alkB) gene, as well as alcohol dehydrogenase gene and aldehyde dehydrogenase gene involved in the alkane assimilation were annotated in the genome of type strain DJM-14T.


Assuntos
Nocardioides , Fosfolipídeos , Fosfolipídeos/química , Nocardioides/genética , Solo , Filogenia , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/química , DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
14.
Sci Rep ; 14(1): 2294, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280982

RESUMO

Microbiological enhanced oil recovery (MEOR) uses indigenous or exogenous microorganisms and nutrients to enhance oil production through synthesis of metabolites reducing oil viscosity and surface tension. In order to find bacteria suitable for MEOR, we studied 26 isolates from wells in the Akingen oilfield in West Kazakhstan. Six of them were selected for further analysis based on their ability to reduce surface tension to less than 40 mN/m, with the A9 isolate exhibiting tension reduction values of 32.76 ± 0.3 mN/m. Based on the morphological features, biochemical activities, and the 16S rRNA gene, the isolates were classified to the Bacillus subtilis group. In the phylogenetic analysis the isolates grouped into two main clusters. Genes encoding the surfactin synthetase subunits were found in A2, A8, A9, A12, PW2, only the PW2 strain had lchAA encoding lichenysin, while sacB encoding levan was noted in A2, A8, A9, and A12. The expression of srfAB, srfAC, and sacB tested with qPCR varied among strains. Nevertheless, whereas temperature moderately affects the expression level, with the highest level recorded at 40 °C, salinity significantly impacts the expression of the genes encoding biosurfactants. B. subtilis strains isolated in the study, especially A9, are promising for microbial-enhanced oil recovery.


Assuntos
Petróleo , Petróleo/metabolismo , Campos de Petróleo e Gás , Filogenia , RNA Ribossômico 16S/genética , Cazaquistão , Tensoativos/química , Óleos , Biopolímeros
15.
Environ Int ; 184: 108398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237504

RESUMO

BACKGROUND: Oil and gas exploitation can release several contaminants in the environment, including trace elements, with potentially deleterious effects on exposed pregnant individuals and their developing fetus. Currently, there is limited data on pregnant individuals' exposure to contaminants associated with oil and gas activity. OBJECTIVES: We aimed to 1)measure concentrations of trace elements in biological and tap water samples collected from pregnant individuals participating in the EXPERIVA study; 2)compare with reference populations and health-based guidance values; 3)assess correlations across matrices; and 4)evaluate associations with the density/proximity of oil and gas wells. METHODS: We collected tap water, hair, nails, and repeated urine samples from 85pregnant individuals, and measured concentrations of 21trace elements. We calculated oil and gas well density/proximity (Inverse Distance Weighting [IDW]) for 4buffer sizes (2.5 km, 5 km, 10 km, no buffer). We performed Spearman's rank correlation analyses to assess the correlations across elements and matrices. We used multiple linear regression models to evaluate the associations between IDWs and concentrations. RESULTS: Some study participants had urinary trace element concentrations exceeding the 95th percentile of reference values; 75% of participants for V, 29% for Co, 22% for Ba, and 20% for Mn. For a given trace element, correlation coefficients ranged from -0.23 to 0.65 across matrices; correlations with tap water concentrations were strongest for hair, followed by nails, and urine. Positive (e.g., Cu, Cr, Sr, U, Ga, Ba, Al, Cd) and negative (e.g., Fe) associations were observed between IDW metrics and the concentrations of certain trace elements in water, hair, and nails. SIGNIFICANCE: Our results suggest that pregnant individuals living in an area of oil and gas activity may be more exposed to certain trace elements (e.g., Mn, Sr, Co, Ba) than the general population. Association with density/proximity of wells remains unclear.


Assuntos
Oligoelementos , Feminino , Gravidez , Humanos , Oligoelementos/análise , Campos de Petróleo e Gás , Unhas/química , Colúmbia Britânica , Cabelo/química , Água/análise
16.
J Environ Manage ; 352: 119897, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38184869

RESUMO

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.


Assuntos
Ecossistema , Campos de Petróleo e Gás , Humanos , Consenso , Meio Ambiente , Clima
17.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043822

RESUMO

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Campos de Petróleo e Gás , Solo/química , Amônia/análise , Biodegradação Ambiental , Hidrocarbonetos/análise , Alcanos , Microbiologia do Solo , Poluentes do Solo/análise
18.
Ecol Appl ; 34(2): e2929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37942503

RESUMO

The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.


Assuntos
Briófitas , Traqueófitas , Áreas Alagadas , Campos de Petróleo e Gás , Alberta , Solo , Água
19.
N Biotechnol ; 79: 30-38, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38040289

RESUMO

Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.


Assuntos
Desinfetantes , Microbiota , Humanos , Campos de Petróleo e Gás , Efeitos Antropogênicos , Bactérias/metabolismo , Água , Desinfetantes/metabolismo
20.
J Environ Qual ; 53(1): 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37830264

RESUMO

The urealytically active microorganism Sporosarcina luteola induces the precipitation of metals, which has attracted attention in biomineralization, bioremediation, and industrial waste recycling. Herein, we report a novel biosurfactant-producing strain of S. luteola ME44 isolated from Chinese Oilfield. The structure, composition, and surface activity of the biosurfactants produced by S. luteola ME44 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight mass spectrometry, and surface tensiometer. The biosurfactant extracted by strain ME44 was identified as surfactin with five variants and the yield was 1010 ± 60 mg⋅L-1 . This is the first report on the structural composition and surface activity of biosurfactants isolated from the S. luteola. It extended our knowledge about the role of the species S. luteola in the ecosystem of extreme natural environments such as oil reservoir. In addition, S. luteola ME44 showed bioprecipitation properties for metal ions Cd(II), Cu(II), Zn(II), and Ag(I), which indicated the application potential of S. luteola in the field of bioremediation.


Assuntos
Campos de Petróleo e Gás , Sporosarcina , Ecossistema , Tensoativos/química , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...